Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1384496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736443

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that interact with the roots of most land plants. The genome of the AMF model species Rhizophagus irregularis contains hundreds of predicted small effector proteins that are secreted extracellularly but also into the plant cells to suppress plant immunity and modify plant physiology to establish a niche for growth. Here, we investigated the role of four nuclear-localized putative effectors, i.e., GLOIN707, GLOIN781, GLOIN261, and RiSP749, in mycorrhization and plant growth. We initially intended to execute the functional studies in Solanum lycopersicum, a host plant of economic interest not previously used for AMF effector biology, but extended our studies to the model host Medicago truncatula as well as the non-host Arabidopsis thaliana because of the technical advantages of working with these models. Furthermore, for three effectors, the implementation of reverse genetic tools, yeast two-hybrid screening and whole-genome transcriptome analysis revealed potential host plant nuclear targets and the downstream triggered transcriptional responses. We identified and validated a host protein interactors participating in mycorrhization in the host.S. lycopersicum and demonstrated by transcriptomics the effectors possible involvement in different molecular processes, i.e., the regulation of DNA replication, methylglyoxal detoxification, and RNA splicing. We conclude that R. irregularis nuclear-localized effector proteins may act on different pathways to modulate symbiosis and plant physiology and discuss the pros and cons of the tools used.

2.
Nat Plants ; 10(4): 598-617, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514787

RESUMEN

Beneficial interactions with microorganisms are pivotal for crop performance and resilience. However, it remains unclear how heritable the microbiome is with respect to the host plant genotype and to what extent host genetic mechanisms can modulate plant-microbiota interactions in the face of environmental stresses. Here we surveyed 3,168 root and rhizosphere microbiome samples from 129 accessions of locally adapted Zea, sourced from diverse habitats and grown under control and different stress conditions. We quantified stress treatment and host genotype effects on the microbiome. Plant genotype and source environment were predictive of microbiome abundance. Genome-wide association analysis identified host genetic variants linked to both rhizosphere microbiome abundance and source environment. We identified transposon insertions in a candidate gene linked to both the abundance of a keystone bacterium Massilia in our controlled experiments and total soil nitrogen in the source environment. Isolation and controlled inoculation of Massilia alone can contribute to root development, whole-plant biomass production and adaptation to low nitrogen availability. We conclude that locally adapted maize varieties exert patterns of genetic control on their root and rhizosphere microbiomes that follow variation in their home environments, consistent with a role in tolerance to prevailing stress.


Asunto(s)
Microbiota , Raíces de Plantas , Rizosfera , Zea mays , Zea mays/microbiología , Zea mays/genética , Microbiota/genética , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Microbiología del Suelo , Estudio de Asociación del Genoma Completo , Variación Genética , Adaptación Fisiológica/genética , Genotipo
3.
Plant J ; 116(1): 7-22, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37608631

RESUMEN

Strigolactones are a class of phytohormones that are involved in many different plant developmental processes, including the rhizobium-legume nodule symbiosis. Although both positive and negative effects of strigolactones on the number of nodules have been reported, the influence of strigolactones on nodule development is still unknown. Here, by means of the ramosus (rms) mutants of Pisum sativum (pea) cv Terese, we investigated the impact of strigolactone biosynthesis (rms1 and rms5) and signaling (rms3 and rms4) mutants on nodule growth. The rms mutants had more red, that is, functional, and larger nodules than the wild-type plants. Additionally, the increased nitrogen fixation and senescence zones with consequently reduced meristematic and infection zones indicated that the rms nodules developed faster than the wild-type nodules. An enhanced expression of the nodule zone-specific molecular markers for meristem activity and senescence supported the enlarged, fast maturing nodules. Interestingly, the master nodulation regulator, NODULE INCEPTION, NIN, was strongly induced in nodules of all rms mutants but not prior to inoculation. Determination of sugar levels with both bulk and spatial metabolomics in roots and nodules, respectively, hints at slightly increased malic acid levels early during nodule primordia formation and reduced sugar levels at later stages, possibly the consequence of an increased carbon usage of the enlarged nodules, contributing to the enhanced senescence. Taken together, these results suggest that strigolactones regulate the development of nodules, which is probably mediated through NIN, and available plant sugars.


Asunto(s)
Pisum sativum , Reguladores del Crecimiento de las Plantas , Pisum sativum/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Fijación del Nitrógeno/fisiología , Simbiosis/fisiología , Azúcares/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
4.
Methods Mol Biol ; 2690: 311-334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450157

RESUMEN

Mapping protein-protein interactions is crucial to understand protein function. Recent advances in proximity-dependent biotinylation (BioID) coupled to mass spectrometry (MS) allow the characterization of protein complexes in diverse plant models. Here, we describe the use of BioID in hairy root cultures of tomato and provide detailed information on how to analyze the data obtained by MS.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Biotinilación , Catálisis , Mapeo de Interacción de Proteínas/métodos
5.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298075

RESUMEN

Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Plantas/genética , Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas
6.
Plant Cell Physiol ; 64(9): 1008-1020, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37279553

RESUMEN

Under specific conditions, the germination of Arabidopsis thaliana is dependent on the activation of the KARRIKIN INSENSITIVE 2 (KAI2) signaling pathway by the KAI2-dependent perception of karrikin or the artificial strigolactone analogue, rac-GR24. To regulate the induction of germination, the KAI2 signaling pathway relies on MORE AXILLARY BRANCHED 2- (MAX2-)dependent ubiquitination and proteasomal degradation of the repressor protein SUPPRESSOR OF MAX2 1 (SMAX1). It is not yet known how the degradation of SMAX1 proteins eventually results in the regulation of seed germination, but it has been hypothesized that SMAX1-LIKE generally functions as transcriptional repressors through the recruitment of co-repressors TOPLESS (TPL) and TPL-related, which in turn interact with histone deacetylases. In this article, we show the involvement of histone deacetylases HDA6, HDA9, HDA19 and HDT1 in MAX2-dependent germination of Arabidopsis, and more specifically, that HDA6 is required for the induction of DWARF14-LIKE2 expression in response to rac-GR24 treatment.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Germinación , Proteínas de Arabidopsis/metabolismo , Lactonas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
7.
Trends Plant Sci ; 28(9): 1045-1059, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37062674

RESUMEN

Both pathogenic and symbiotic microorganisms modulate the immune response and physiology of their host to establish a suitable niche. Key players in mediating colonization outcome are microbial effector proteins that act either inside (cytoplasmic) or outside (apoplastic) the plant cells and modify the abundance or activity of host macromolecules. We compile novel insights into the much-disputed processes of effector secretion and translocation of filamentous organisms, namely fungi and oomycetes. We report how recent studies that focus on unconventional secretion and effector structure challenge the long-standing image of effectors as conventionally secreted proteins that are translocated with the aid of primary amino acid sequence motifs. Furthermore, we emphasize the potential of diverse, unbiased, state-of-the-art proteomics approaches in the holistic characterization of fungal and oomycete effectomes.


Asunto(s)
Oomicetos , Oomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Secuencias de Aminoácidos , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno , Hongos/metabolismo
8.
Trends Plant Sci ; 28(5): 491-494, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907695

RESUMEN

Citizen science is an undervalued tool in a scientist's toolbox with the potential to go beyond primary data collection to strengthen fundamental and applied science. We call for the integration of these three disciplines to make agriculture sustainable and adaptive to climate change, with North-Western European soybean cultivation as showcase.


Asunto(s)
Agricultura , Cambio Climático
9.
Front Microbiol ; 14: 1113442, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846751

RESUMEN

The type III secretion system (T3SS) is a well-studied pathogenicity determinant of many bacteria through which effectors (T3Es) are translocated into the host cell, where they exercise a wide range of functions to deceive the host cell's immunity and to establish a niche. Here we look at the different approaches that are used to functionally characterize a T3E. Such approaches include host localization studies, virulence screenings, biochemical activity assays, and large-scale omics, such as transcriptomics, interactomics, and metabolomics, among others. By means of the phytopathogenic Ralstonia solanacearum species complex (RSSC) as a case study, the current advances of these methods will be explored, alongside the progress made in understanding effector biology. Data obtained by such complementary methods provide crucial information to comprehend the entire function of the effectome and will eventually lead to a better understanding of the phytopathogen, opening opportunities to tackle it.

10.
J Exp Bot ; 73(18): 6272-6291, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35738874

RESUMEN

Although the division of the pericycle cells initiates both lateral root development and root-derived callus formation, these developmental processes are affected differently in the strigolactone and karrikin/KARRIKIN INSENSITIVE 2 (KAI2) ligand signalling mutant more axillary growth 2 (max2). Whereas max2 produces more lateral roots than the wild type, it is defective in the regeneration of shoots from root explants. We suggest that the decreased shoot regeneration of max2 originates from delayed formation of callus primordium, yielding less callus material to regenerate shoots. Indeed, when incubated on callus-inducing medium, the pericycle cell division was reduced in max2 and the early gene expression varied when compared with the wild type, as determined by a transcriptomics analysis. Furthermore, the expression of the LATERAL ORGAN BOUNDARIES DOMAIN genes and of callus-induction genes was modified in correlation with the max2 phenotype, suggesting a role for MAX2 in the regulation of the interplay between cytokinin, auxin, and light signalling in callus initiation. Additionally, we found that the in vitro shoot regeneration phenotype of max2 might be caused by a defect in KAI2, rather than in DWARF14, signalling. Nevertheless, the shoot regeneration assays revealed that the strigolactone biosynthesis mutants max3 and max4 also play a minor role.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ligandos , Raíces de Plantas/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo
11.
Front Plant Sci ; 13: 887232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645992

RESUMEN

Although the main players of the strigolactone (SL) signaling pathway have been characterized genetically, how they regulate plant development is still poorly understood. Of central importance are the SUPPRESSOR OF MAX2 1-LIKE (SMXL) proteins that belong to a family of eight members in Arabidopsis thaliana, of which one subclade is involved in SL signaling and another one in the pathway of the chemically related karrikins. Through proteasomal degradation of these SMXLs, triggered by either DWARF14 (D14) or KARRIKIN INSENSITIVE2 (KAI2), several physiological processes are controlled, such as, among others, shoot and root architecture, seed germination, and seedling photomorphogenesis. Yet another clade has been shown to be involved in vascular development, independently of the D14 and KAI2 actions and not relying on proteasomal degradation. Despite their role in several aspects of plant development, the exact molecular mechanisms by which SMXLs regulate them are not completely unraveled. To fill the major knowledge gap in understanding D14 and KAI2 signaling, SMXLs are intensively studied, making it challenging to combine all the insights into a coherent characterization of these important proteins. To this end, this review provides an in-depth exploration of the recent data regarding their physiological function, evolution, structure, and molecular mechanism. In addition, we propose a selection of future perspectives, focusing on the apparent localization of SMXLs in subnuclear speckles, as observed in transient expression assays, which we couple to recent advances in the field of biomolecular condensates and liquid-liquid phase separation.

12.
Environ Microbiol ; 24(8): 3334-3354, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35212122

RESUMEN

In Europe, soybean (Glycine max) used for food and feed has to be imported, causing negative socioeconomic and environmental impacts. To increase the local production, breeding generated varieties that grow in colder climates, but the yield using the commercial inoculants is not satisfactory in Belgium because of variable nodulation efficiencies. To look for indigenous nodulating strains possibly adapted to the local environment, we initiated a nodulation trap by growing early-maturing cultivars under natural and greenhouse conditions in 107 garden soils in Flanders. Nodules occurred in 18 and 21 soils in the garden and greenhouse experiments respectively. By combining 16S rRNA PCR on single isolates with HiSeq 16S metabarcoding on nodules, we found a large bacterial richness and diversity from different soils. Furthermore, using Oxford Nanopore Technologies sequencing of DNA from one nodule, we retrieved the entire genome of a Bradyrhizobium species, not previously isolated, but profusely present in that nodule. These data highlight the need of combining diverse identification techniques to capture the true nodule rhizobial community. Eight selected rhizobial isolates were subdivided by whole-genome analysis in three genera containing six genetically distinct species that, except for two, aligned with known type strains and were all able to nodulate soybean in the laboratory.


Asunto(s)
Bradyrhizobium , Fabaceae , Rhizobium , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Rhizobium/genética , Nódulos de las Raíces de las Plantas/microbiología , Suelo , Glycine max/microbiología , Simbiosis/genética
13.
Protoplasma ; 259(2): 277-290, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33973099

RESUMEN

The F-box domain is a conserved structural protein motif that most frequently interacts with the SKP1 protein, the core of the SCFs (SKP1-CULLIN-F-box protein ligase) E3 ubiquitin protein ligases. As part of the SCF complexes, the various F-box proteins recruit substrates for degradation through ubiquitination. In this study, we functionally characterized an F-box gene (MtF-box) identified earlier in a population of Tnt1 retrotransposon-tagged mutants of Medicago truncatula and its Arabidopsis thaliana homolog (AtF-box) using gain- and loss-of-function plants. We highlighted the importance of MtF-box in leaf development of M. truncatula. Protein-protein interaction analyses revealed the 2-isopropylmalate synthase (IPMS) protein as a common interactor partner of MtF-box and AtF-box, being a key enzyme in the biosynthesis pathway of the branched-chain amino acid leucine. For further detailed analysis, we focused on AtF-box and its role during the cell division cycle. Based on this work, we suggest a mechanism for the role of the studied F-box gene in regulation of leucine homeostasis, which is important for growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Medicago truncatula , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Homeostasis , Leucina/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
Environ Microbiol Rep ; 14(1): 60-69, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34797028

RESUMEN

Root endospheres house complex and diverse bacterial communities, of which many strains have not been cultivated yet by means of the currently available isolation techniques. The Prospector® (General Automation Lab Technologies, San Carlos, CA, USA), an automated and high-throughput bacterial cultivation system, was applied to analyse the root endomicrobiome of lettuce (Lactuca sativa L.). By using deep sequencing, we compared the results obtained with the Prospector and the traditional solid medium culturing and extinction methods. We found that the species richness did not differ and that the amount of previously uncultured bacteria did not increase, but that the bacterial diversity isolated by the three methods varied. In addition, the tryptic soy broth and King's B media provided a lower, but different, diversity of bacteria than that of Reasoner's 2A (R2A) medium when used within the Prospector system and the number of unique bacterial strains did not weigh up against those isolated with the R2A medium. Thus, to cultivate as broad a variety of bacteria as possible, divergent isolation techniques should be used in parallel. Thanks to its speed and limited manual requirements, the Prospector is a valuable system to enlarge root microbiome culture collections.


Asunto(s)
Lactuca , Microbiota , Medios de Cultivo , Fuerza de la Mano , Ríos
15.
Plant Cell Physiol ; 63(1): 104-119, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34791413

RESUMEN

The synthetic strigolactone (SL) analog, rac-GR24, has been instrumental in studying the role of SLs as well as karrikins because it activates the receptors DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2) of their signaling pathways, respectively. Treatment with rac-GR24 modifies the root architecture at different levels, such as decreasing the lateral root density (LRD), while promoting root hair elongation or flavonol accumulation. Previously, we have shown that the flavonol biosynthesis is transcriptionally activated in the root by rac-GR24 treatment, but, thus far, the molecular players involved in that response have remained unknown. To get an in-depth insight into the changes that occur after the compound is perceived by the roots, we compared the root transcriptomes of the wild type and the more axillary growth2 (max2) mutant, affected in both SL and karrikin signaling pathways, with and without rac-GR24 treatment. Quantitative reverse transcription (qRT)-PCR, reporter line analysis and mutant phenotyping indicated that the flavonol response and the root hair elongation are controlled by the ELONGATED HYPOCOTYL 5 (HY5) and MYB12 transcription factors, but HY5, in contrast to MYB12, affects the LRD as well. Furthermore, we identified the transcription factors TARGET OF MONOPTEROS 5 (TMO5) and TMO5 LIKE1 as negative and the Mediator complex as positive regulators of the rac-GR24 effect on LRD. Altogether, hereby, we get closer toward understanding the molecular mechanisms that underlay the rac-GR24 responses in the root.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoles/genética , Flavonoles/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Organogénesis de las Plantas/genética , Transducción de Señal
16.
Plant Commun ; 2(5): 100166, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34746757

RESUMEN

Phelipanche ramosa is an obligate root-parasitic weed that threatens major crops in central Europe. In order to germinate, it must perceive various structurally divergent host-exuded signals, including isothiocyanates (ITCs) and strigolactones (SLs). However, the receptors involved are still uncharacterized. Here, we identify five putative SL receptors in P. ramosa and show that PrKAI2d3 is involved in the stimulation of seed germination. We demonstrate the high plasticity of PrKAI2d3, which allows it to interact with different chemicals, including ITCs. The SL perception mechanism of PrKAI2d3 is similar to that of endogenous SLs in non-parasitic plants. We provide evidence that PrKAI2d3 enzymatic activity confers hypersensitivity to SLs. Additionally, we demonstrate that methylbutenolide-OH binds PrKAI2d3 and stimulates P. ramosa germination with bioactivity comparable to that of ITCs. This study demonstrates that P. ramosa has extended its signal perception system during evolution, a fact that should be considered for the development of specific and efficient biocontrol methods.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Hidrolasas/genética , Isotiocianatos/metabolismo , Lactonas/metabolismo , Orobanchaceae/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Europa (Continente) , Hidrolasas/química , Hidrolasas/metabolismo , Orobanchaceae/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Malezas/genética , Malezas/metabolismo , Alineación de Secuencia
17.
Comput Struct Biotechnol J ; 19: 4235-4247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34429844

RESUMEN

As wheat (Triticum aestivum) is an important staple food across the world, preservation of stable yields and increased productivity are major objectives in breeding programs. Drought is a global concern because its adverse impact is expected to be amplified in the future due to the current climate change. Here, we analyzed the effects of edaphic, environmental, and host factors on the wheat root microbiomes collected in soils from six regions in Belgium. Amplicon sequencing analysis of unplanted soil and wheat root endosphere samples indicated that the microbial community variations can be significantly explained by soil pH, microbial biomass, wheat genotype, and soil sodium and iron levels. Under drought stress, the biodiversity in the soil decreased significantly, but increased in the root endosphere community, where specific soil parameters seemingly determine the enrichment of bacterial groups. Indeed, we identified a cluster of drought-enriched bacteria that significantly correlated with soil compositions. Interestingly, integration of a functional analysis further revealed a strong correlation between the same cluster of bacteria and ß-glucosidase and osmoprotectant proteins, two functions known to be involved in coping with drought stress. By means of this in silico analysis, we identified amplicon sequence variants (ASVs) that could potentially protect the plant from drought stress and validated them in planta. Yet, ASVs based on 16S rRNA sequencing data did not completely distinguish individual isolates because of their intrinsic short sequences. Our findings support the efforts to maintain stable crop yields under drought conditions through implementation of root microbiome analyses.

18.
Methods Mol Biol ; 2309: 129-142, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34028684

RESUMEN

Growth and development of plant roots are highly dynamic and adaptable to environmental conditions. They are under the control of several plant hormone signaling pathways, and therefore root developmental responses can be used as bioassays to study the action of plant hormones and other small molecules. In this chapter, we present different procedures to measure root traits of the model plant Arabidopsis thaliana. We explain methods for phenotypic analysis of lateral root development, primary root length, root skewing and straightness, and root hair density and length. We describe optimal growth conditions for Arabidopsis seedlings for reproducible root and root hair developmental outputs; and how to acquire images and measure the different traits using image analysis with relatively low-tech equipment. We provide guidelines for a semiautomatic image analysis of primary root length, root skewing, and root straightness in Fiji and a script to automate the calculation of root angle deviation from the vertical and root straightness. By including mutants defective in strigolactone (SL) or KAI2 ligand (KL) synthesis and/or signaling, these methods can be used as bioassays for different SLs or SL-like molecules. In addition, the techniques described here can be used for studying seedling root system architecture, root skewing, and root hair development in any context.


Asunto(s)
Arabidopsis/efectos de los fármacos , Bioensayo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Microscopía , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Procesamiento de Imagen Asistido por Computador , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
19.
Nat Plants ; 7(4): 481-499, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33833418

RESUMEN

Beneficial interactions between plant roots and rhizosphere microorganisms are pivotal for plant fitness. Nevertheless, the molecular mechanisms controlling the feedback between root architecture and microbial community structure remain elusive in maize. Here, we demonstrate that transcriptomic gradients along the longitudinal root axis associate with specific shifts in rhizosphere microbial diversity. Moreover, we have established that root-derived flavones predominantly promote the enrichment of bacteria of the taxa Oxalobacteraceae in the rhizosphere, which in turn promote maize growth and nitrogen acquisition. Genetic experiments demonstrate that LRT1-mediated lateral root development coordinates the interactions of the root system with flavone-dependent Oxalobacteraceae under nitrogen deprivation. In summary, these experiments reveal the genetic basis of the reciprocal interactions between root architecture and the composition and diversity of specific microbial taxa in the rhizosphere resulting in improved plant performance. These findings may open new avenues towards the breeding of high-yielding and nutrient-efficient crops by exploiting their interaction with beneficial soil microorganisms.


Asunto(s)
Flavonas/metabolismo , Nitrógeno/deficiencia , Oxalobacteraceae/fisiología , Raíces de Plantas/microbiología , Microbiología del Suelo , Zea mays/metabolismo , Microbiota , Fitomejoramiento , Rizosfera , Transcriptoma , Zea mays/crecimiento & desarrollo , Zea mays/microbiología
20.
Environ Microbiol ; 23(10): 5659-5669, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33684235

RESUMEN

The bacterium Paenibacillus polymyxa is found naturally in diverse niches. Microbiome analyses have revealed enrichment in the genus Paenibacillus in soils under different adverse conditions, which is often accompanied by improved growth conditions for residing plants. Furthermore, Paenibacillus is a member of the core microbiome of several agriculturally important crops, making its close association with plants an interesting research topic. This review covers the versatile interaction possibilities of P. polymyxa with plants and its applicability in industry and agriculture. Thanks to its array of produced compounds and traits, P. polymyxa is likely an efficient plant growth-promoting bacterium, with the potential of biofertilization, biocontrol and protection against abiotic stresses. By contrast, cases of phytotoxicity of P. polymyxa have been described as well, in which growth conditions seem to play a key role. Because of its adjustable character, we propose this bacterial species as an outstanding model for future studies on host-microbe communications and on the manner how the environment can influence these interactions.


Asunto(s)
Paenibacillus polymyxa , Paenibacillus , Paenibacillus/genética , Paenibacillus polymyxa/genética , Desarrollo de la Planta , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...